TO:

Steve R., Dick Brody

FROM:

Santa

CONCERNING: Assessment of Media Measures in RXS

Four media questions were asked from the beginning (January 11) to the end (December 7) of Continuous Monitoring. The questions tracked ongoing media campaign coverage rather than attention to special events. The questions are:

- F1. How many days in the past week did you watch national news on TV?
- Fla. How much attention did you pay to news on TV about the campaign for President?
- F2. How many days in the past week did you read a daily newspaper?
- F2b. How much attention did you pay to articles in the newspaper about the campaign for President?

The overall percentages across the entire time period for watching national news on TV and reading newspapers are given in Table 1. Sample percentages for amount of attention paid to campaign coverage in both of these media are given in Table 2.

TABLE 1. DAYS READ NEWSPAPERS OR WATCHED TV NEWS

	0	1	2	3	4	5	6	7	\overline{X}	SD
F1 - TV F2 - News	14 15	6 8	9 8	12 8	8 6	11 6	4 4	35 4- 7	4.2	2.6

TABLE 2. ATTENTION PAID CAMPAIGN COVERAGE

	į, ·	Great Deal	Quite A Bit	Some	Very Little	None*
Fla - Attn.		19	22	31	13	15
F3b - Attn.		11	15	32	20	21

^{* 0} days on F1/F2 are included here

The reported number of days reading a newspaper is higher than the reported number of days watching national news on TV. On the other hand, more attention is paid to campaign coverage on TV than in the newspapers. This is sensible, since the TV watching question focused specifically on national news (where campaign news was presumably inescapable) while undoubtedly many persons faithfully read their daily newspapers with only a glance at the front page and campaign news.

We also asked Rs about their attention to five specific events: the Republican Convention (F34, F34a), the Democrat convention (F4, F4a), and the three debates (F5-F57a). Table 3 compares reported watching of these five events.

TABLE 3

	%YES	X HRS WATCHED	S.D.	N	
Watch Dem. conv.	71	3.3	4.7	1411	
Watch Rep. conv.	63	2.4	3.0	1057	
					••

	% Watch All	% Watch Part	None	N
lst Debate - Oct.7	42	28	31	613
2nd Debate - Oct.21	41	28	31	437
VP Debate - Oct.11	36	2,3	41	559

Again, these distributions are not surprising, with the Ferraro-Bush debate generating least interest, and the Republican convention watched less than the Democratic one.

Most of these measures have interesting over-time differences. We have chosen two ways to look at over time differences: by month and by election year events. The by-month tracking has the advantage of equal intervals, the election year events clustering shows the data in response to real-world events. Table 4 shows how the election year is broken into periods, for purpose of this analysis.

TABLE 4. Election Year Periods

- 1. Before Iowa primary Jan.7-Feb.19
- 2. Iowa through Super Tuesday -- Feb.20-Mar.16
- Super Tuesday through California --Mar.17-June 5
- 4. California to the conventions -- June 6-July 18
- 5. Convention period --July 19-Aug.26
- 6. Post conventions to 1st Debate -- Aug. 27-Oct. 7
- 7. Balance of campaign period -- Oct. 8 to Nov. 5
- 8. Post election --Nov.7-Dec.7

Basically, attention to campaign news either on TV or in newspapers is expected to pick up during a) an interesting primary contest and b) as the election nears. These time periods should also show at least moderate increases in reported number of days watched national news, although the habit of daily newspaper readership may be less influenced by campaign events.

The days watched or read variables behave as expected over time. That is, newspaper readership does not vary significantly with month of interview or with election period. However, the reported number of days watching national news on TV does vary by both month and election period. (Printout from analysis of variance runs is appended).

Four bivariate tables are also appended. These show days watched national news on TV by month and election year cluster; and days read newspaper by month and election year. The "O days attended" and "7 days attended" rows for both TV and newspaper are reproduced in Tables 5a (by month) and 5b (by election year event cluster) below. (Percent will not sum to 100 since this is only a portion of the table).

TABLE 5a. NUMBER OF DAYS ATTENDED BY MONTHS OF CAMPAIGN

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov
0 Days TV	14	15	14	15	14	19	15	15	13	13	11
0 Days News	16	15	14	15	15	13	17	18	13	14	16
7 Days TV	33	38	3 7	40	32	28	31	38	35	34	43
7 Days News	34	48	48	49	45	49	43	45	50	48	43

TABLE 5b. NUMBER OF DAYS WATCHED BY ELECTION PERIOD

	1	2	3	4	5	6	7	8
O Days TV	14	13	15	19	13	14	12	11
O Days News	16	16	14	16	15	14	14	17
7 Days TV	36	36	35	29	37	33	36	42
7 Days News	49	43	48	44	47	48	48	42

Attention to news about the campaign also moves appropriately with time, both for TV and newspapers, although the 'read news about campaign' is comparatively muted. See Table 6, below. (The breakdown by months is similar). The TV columns should sum across to 100%. as should the columns headed News.

TABLE 6. ATTENTION TO MEDIA BY ELECTION YEAR EVENTS

-	Great Quite	' -		Some	e 		ery	e/Never
	%	;		%			:	%
Election Period	TV	News	Т	V	News	1	TV	News
1	28	17	3	9	39		34	34
2	43	22	2	9	35	1	29	44
3	40	25	2	9	31	1	31	45
4	35	23	3	2	35		32	42
5	43	29	3	1	30	1	26	41
6	40 l	29	3	1	28	-	29	43
7	52	34	2	6	32		22	35
Post 8	57	35	3	2	29	1	20	36

It is troubling that more people reported paying more attention to news about the campaign on TV after the election. Perhaps the "glow" from election night coverage is remembered long afterwards. It should be noted that the question about attention to campaign news on TV was asked as late as November 27. Certainly in the last week of this period news about the Presidential campaign was pretty hard to come by, much less to pay a Great Deal of attention to. (Attention to articles about the campaign and TV news about the campaign, distributed by month, show the same pattern).

Of the items which ask for recollections of watching a specific event (e.g., watch a debate) as opposed to tracking ongoing media, the convention items show an interesting pattern with regard to time. (Results are presented by months, since equal time intervals are important. The data are similar for election year event clusters.) That is, recollection of the event decays as time passes and slightly inflates after the election.

TABLE 7a. Table 7b.

%Watch Dem. Conv.	X Hrs.	%Watch Rep. Conv.	X Hrs.	1	% Watch Debate 1 All/ Part	Deba	ate 2		Pebate
				ľ					
79	3.7			i					
72	3.6	72	3.4	1					
72	3.4	67	2.6						
68	2.8	60	2.2		43 27	43	29	34	24
71	3.0	60	2.3	-	42 29	41	26	38	22
	79 72 72 68	Dem. Conv. 79 3.7 72 3.6 72 3.4 68 2.8	Dem. Rep. Conv. 79 3.7 72 3.6 72 72 3.4 67 68 2.8 60	Dem. Rep. Conv. 79 3.7 72 3.6 72 3.4 72 3.4 67 2.6 68 2.8 60 2.2	Dem. Conv. Rep. Conv. 79 3.7 72 3.6 72 3.4 72 3.4 67 2.6 68 2.8 60 2.2	Watch X Hrs. X Hrs. Debate 1 All/ Part Dem. Conv. Conv. 79 3.7	%Watch X Hrs. %Watch X Hrs. Debate 1 Deba	Watch X Hrs. X Hrs. Debate 1 Debate 2 All/ Part All/ Part Conv. 79 3.7 72 3.6 72 3.4 72 3.4 67 2.6 68 2.8 60 2.2 43 27 43 29	Watch X Hrs. X Hrs. Debate 1 Debate 2 VP I Dem. Rep. Conv. Rep. Conv. All/ Part All/

Factor Analysis

I have done factor analysis to assess reliabilities, including separate factor analyses for the version groupings suggested in the memo as well as the entire dataset. Table 8 brings together some of the major factor analysis output. The trouble is that, in doing separte factor analyses, we are adding variables at each version as well as moving in time through the campaign period, which at least theoretically means changing stimuli. Both changes may have an impact on the factor structure. Also, the N's are very different, going from 2028 in the version 1-6 to 54 for version 9. So if the factor loadings bounce around, and they do a bit, further analysis would be needed to figure out why.

Two columns that might usefully be compared are the first and the last. The first represents a factor analysis on the entire dataset in which all variables were thrown in, regardless of version. Pairwise deletion of missing data ensured minimum missing data. If a case had missing data on either variable in the bivariate correlation, it was deleted for that correlation, but could be used for other bivariate correlations which the case had valid data on for both variables. In the last column, factor results are reported for a matrix of correlations which were computed across variables only for the subset of cases responding on all the questions. It is reassuring to note that these two columns compare very favorably.

In all versions (except 9), newspaper readership has the lowest loading. The highest is either Attention to TV News About the Campaign or Watching the Second Debate. It seems clear that a factor score of these variables would measure attention to the campaign via television.

Validity

Three measures of validity were requested: correlations of each of the media items with measures of political interest, political involvement, and opinionation. The relevant matrix is inserted as Table 9. (The correlations are r's; the measure of interest and involvement goes from 1- high to 9 - low; hence the negative correlations with number of days and number hours.)

The opinionation measure is a count of 997's and 998's on the thermometer ratings (i.e., DKs and NAs). The correlations with media watching are only moderate, but have an appropriate pattern. That is, one would not expect watching debates to contribute to variance in number of political figures known, and it does not. But the more days you read the newspaper, the fewer the number of political figures you did not recognize.

Political interest (a combination of interest in campaign [B4.] and follow public affairs [B2.]) is more strongly related to media watching than is involvement (cares who wins and talks to others about supporting candidate). Paying attention to newspaper articles about the campaign, to TV national news about the campaign, and watching the debates are the highest correlations with political interest. The political involvement measures show the same pattern of relationships, but at a lower level.

The education variable (# of years of schooling) has a reasonable pattern of correlation with media variables. With education, the newspaper readership correlation stands out, but especially in comparison to the weak to non- existent correlations with TV watching, either ongoing or special event in nature.

TABLE 8. FACTOR ANALYSIS RESULTS

FACTOR MATRIX (LOADINGS-ABSOLUTE VALUES)*

			Versions						
		1-13	V1-6	V7	V8	V9	V10	V11-12	
Days Wtch. Natnl News	V401	0.64	75	75	68	79	58	60	
Attnt. TV Re Campgn	R402	0.71	78	85	78	78	56	67 ·	
#Days Read Newspaper	V403	0.42	63	52	39	57	33	50	
Attn.News Art Re Cam	R407	0.61	77	72	62	71	55	60	
- WatchDemCnv	V408	0.61		64	70	52	58	58	
#Hrs Watched Dem	R409	0.63		63	70	66	64	60	
WatchRepCnv	V410	0.64			69	57	66	63	
#HrsWatchedRep	R411	0.65			71	67	70	64	
Watch Debate.1	R413	0.63				61	70	63	
Watch 2nd Debate	R415	0.68						70	
Watch VP Debate	R417	0.63					53	65	

N=2028 N=371 N=484 N=54 N=122 N=396

FACTOR CON	NTRIBUTIONS		V1-6	V7 	V8	V9	V10	V11-12
Sum Square % Total Va	ed Loadings ariance		2.15 53.87	2.89 48.16		3.97 44.13		
Communalit	ty Estimates							
Variable	Final Input	Output						
V401	1.00	.41	•56	•56	•46	•62	•33	•36
R402	1.00	.50	.61	.72	.61	.61	.31	.45
V403	1.00	.18	•39	.27	•15	•33	.10	•25
R407	1.00	•37	•59	•51	.39	•51	.30	.36
V408	1.00	•38		.41	.49	.27	.33	.34
R409	1.00	•40		•40	•50	.44	.40	.36
V410	1.00	.41			•48	.33	•43	•41
R411	1.00	.43			•51	•46	•49	.41
R413	1.00	•40				•38	.48	.39
R415	1.00	•46						.49
R417	1.00	•39					.27	.43

^{*}The low and high values on the items are scored differently, hence there are negative correlations. The signs of the correlation change from version to version, but the signs are always internally consistent within each version.

		•
		•
		,
•		
		-
•		
•		
	•	

DEPARTMENT OF POLITICAL SCIENCE STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305

4 March 1985

MEMORANDUM

TO: Warren Miller, Don Kinder, and Santa Traugott

FROM: Richard A. Brody

SUBJECT: Procedures for the Study of Media Items in the Rolling Cross-Section

In order to prepare for the 1986 study committee, the following analyses of the media attention items in the rolling cross-section should be undertaken:

I. MARGINALS:

Because of the structure of the data set, we will want to examine the marginal distributions on the media items in three ways:

- A. For the entire period -- with missing data excluded from the percentage bases. This is not a very meaningful analysis but we will need a baseline.
 - B. In <u>time-related</u> clusters:
 - 1. Monthly -- January thru November
 - 2. By election year event clusters:
 - a. primary clusters
 - (1) before Iowa
 - (2) Iowa thru Super Tuesday
 - (3) Super Tuesday thru
 - California
 - (4) California to the

Conventions

- b. Convention period
- c. Post-conventions to first debate
- d. Balance of campaign period
- e. Post-election

[Please note I make no brief for this clustering; a look at content flows indicates variation but I haven't done any detailed checking yet.]

C. ITEMS

1. Marginals

40/F1 [0-7] days of TV news

R402F1a [1-5] how much att'n

403 F2 [0-7] days of daily newspaper

407F2b [1-5] how much att'n

408 F3 [1,5] [8=dk] watch Dem conv.

400 F4 [1,5] [8=dk] watch Rep conv.

2. Means, SD's
409F3a hours of viewing Dem convention
40F4a hours of viewing Rep convention

Debate attention indices to be constructed and marginals plotted

F5 and F5a [see Recode instruction #1]

F6 and F6a [ditto]

F7 and F7a [ditto]

II. RELIABILITIES

The only approach to reliability that seems feasible in this data set involves factor analysis constrained to a single factor solution -- I assume inter-item correlations are derived from the same analyses. To avoid horrid missing data problems, Versions 1-6 should comprise one analysis, Versions 7, 8, 9, and 10 should comprise four separate analyses, Versions 11 and 12 should be combined for analysis, and Version 13 should be considered separately.

[If I have misread the list of versions that have identical data sets on the media items, correct the clustering according to that principle. N.B.: In the time related analyses some common clusters will be broken up.]

III. VALIDITY

I propose four validity checks:

A. Correlate each of the media measures [F1 - F7] as defined above with an index of <u>Campaign Interest</u> constructed out of items B1 and B2 recoded and combined in the manner described in Recode Instruction #2

B. Do the identical analyses on a measure of Political Involvement constructed out of items B3 and B6 recoded and combined in the manner described in Recode Instruction #3

C. Do the identical analyses with an index of Opinionation constructed by counting the number of 997 or 998 codes on the C2 thermometers. The index is the

Bruart

proportion of 997's or 998's derived by dividing the count by 14 in versions 1-5 and by 15 in versions 6-13.

D. Correlate each of the media measures with education (Y4]_

IV. RECODE INSTRUCTIONS

1. For each of the three debate sequences, index
attention to the debates as follows -- using F5 for example:

IF ((F5 eq 1 or 7) and (F5a eq 1)) DEBATE1=1

IF ((F5 eq 1 or 7) and (F5a ne 1)) DEBATE1=2

IF ((F5 eq 5 or 8) DEBATE1=3

[Repeat to construct DEBATE2 from F6 and DEBATE3 from F7]

2. Political interest index from B1 and B2 [cell entries are the derived indices]

		B2 Codes	
Bl Codes	<u>1</u>	<u>3</u>	<u>5</u>
1	1	2	5
2	2	4	6
3	3	6	7
4	4	8	8
8	9	9	9

3. Political Involvement index from B3 and B6 [cell entries are the derived index]

D 3			_	_
H	Co	Ю	$\boldsymbol{\omega}$	-

B6 Codes	1	<u>3</u>	8
1	1	4	9
5	3	6	9

							•
			·				
					·		

4

JUL 11, 1985 RUNNING BRODY MEDIA TABLES FOR RXS

ANALYSIS 13

VARIABLE V401 DAYS WTCH NATNL NEWS STRATA(ROW) R3 ELECTIONYEAR CLUSTERS

REVISED	387	317	864	452	409	440	358	255	3,482
TOTALS F	387 100.0	318 100.0	866 100.0	453 100.0	411	441	358 100.0	262 100.0	3,496 3,482 100.0
9 DELETED	00.	0.0	0.0	0.0	0.0	0.0	0	0.0	. ± 0.0
B DELETED	0.0	1 1 5	! ! !	! ! !	i i i	0.0			. woo
7	140	113	305	133	152	147	129	107	1,226 1,226 35.2
9	16	15	32	2.2	20	3.6	22 6.1	4.7	143 143 4.1
ດ	10.9	36	107	9.7	36 8.8	11.6	49 13.7	10.2	391 391 11.2
4	39	18	67 7.8	10.2	9.0	32	28 7.8	9.4	291 291 8.4
e	9.0	43 13.6	94	66 14.6	8.6	69	43 12.0	10.6	417
2	36 9.3	23	9.0	8. 8. 4.	10.01	35 8.0	31	6.7	299 299 8 · 6
-	6.2	27 8.5	6.3	31 6.9	31	6.1	3. B	5.5	222 222 6.4
0	55 14.2	13.2	127	18.6	52 12.7	63 14.3	11.7	11.0	493 493 14.2
	Row %	24 05.5-12 ROW %	Refer C 3	Ced - C 80 % % 4	(67 t) 5 ROW %	to 157 6	CATE TOW X	8 %	TOTALS REVISED ROW %

JUL 11, 1985 RUNNING BRODY MEDIA TABLES FOR RXS

ANALYSIS 14

1984:RXSECT FO1A	ELECTIONYEAR CHISTEDS
V402	R3
VARIABLE	STRATA(ROW)

REVISED	330	275	738	367	358	378	316	194	2,956
TOTALS	387	318 100.0	866 100.0	453 100.0	411	441 100.0	358 100.0	262 100.0	3,496 2,956 100.0
9 DELETED	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	e 0.0
8 DELETED	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
S	2.7	1.5	7 0.9	10	0.3		. O	0.5	04 04 4.1
4	65 19.7	45	133 18.0	14.2	53	58 15.3	10.8	10.8	461 461 15.6
က	150 45.5	91	254 34.4	146 39.8	128 35.8	138 36.5	94	25.3	1,050 1,050 35.5
7	56 17.0	76 27.6	201	27.5	25.4	20.9	31.6	58	762 762 25.8
-	50 15.2	21.5	19.4	58 15.8	23.7	25.9	26.9	33.5	643 643 21.8
DELETED	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	529 0.0
	- %	2410	m %	4 %	w %	w 34	74	× 00	່ ^ເ ດີ ×
	Ros	ROE	Row	Row	Row	Row	Row	Row	TOTALS REVISED ROW %

1

ANALYSIS 15

#DAYS READ NEWSPAPER	ELECTIONYEAR CLUSTERS
V403	R3
VARIABLE	STRATA(ROW)

TOTALS REVISED	387 387 100.0	318 317 100.0	866 865 100.0	453 453 100.0	411 411	441 441	358 358 100.0	262 262 100.0	3,496 3,494
9 DELETED TO	0.0	0.0	0.0	0.0	0.0		0.0	0.0	- 20
^	187	135	414	201	193	212	172	109	1,623
9	2.3	3.5	36	3.1	11 2.7	4.1	3.6	3.6	122
ល	5.9	6.0	4.7	6.0	28 . 9	5.0	20.5	5.0	193
4	26	6.0	53	5.3	5.1	5.2	21	7.3	206
е	7.0	6.0	8.2	9.9	30	34	10.1	10.3	274
7	32 8.3	30 9 9	61	9.0 0.0	9.7	34	5.3	4.6	273
-	5.9	10.4	68 7.9	4 .	25	36	7.5	10.7	281
0	60 15.5	16.1	121	7.1 15.7	63 15.3	62	50	16.8	522 522
	Row %-	Row % 2	Row % G	80 W	ROW %	Row &	Row %	Row 8	TOTALS REVISED

JUL 11, 1985 RUNNING BRODY MEDIA TABLES FOR RXS

ANALYSIS 16

VARIABLE R407 ATTN NEWS ART RE CAM STRATA(ROW) R3 ELECTIONYEAR CLUSTERS

REVISED	387	314	861	452	4 11	441	357	262	3,485
TOTALS	387 100.0	318 100.0	866 100.0	453 100.0	100.00	100.0	358 100.0	262 100.0	3,496 3,485 100.0
9 DELETED	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
S	21.7	24.5	190	103 22.8	21.2	83 18.8	18.5	21.4	746 746 21.4
4	86 22.2	60 19.1	195	19.2	19.7	106	57 16.0	14.5	710 710 20.4
E :	150 38.8	109	265 30.8	158 35.0	125	124	31.9	29.4	1, 122 1, 122 32.2
2	10.3	35	135	15.3	69 16.8	70 15.9	21.0	16.8	537 537 15.4
•	27 7.0	10.5	8.8	7.7	11.9	13.2	12.6	17.9	370 370 10.6
	R 0 ¥ − %	₩ 80 % 10	Row %	Row %	Row %	Row &	Row 7	Row &	TOTALS REVISED ROW %

JUL 11, 1985 RUNNING BRODY MEDIA TABLES FOR RXS

ANALYSIS 1

VARIABLE V401 DAYS WTCH NATNL NEWS STRATA(ROW) V105 1984:RXSECT MONTH INTVW

•													
REVISED	196	322	333	325	345	304	327	336	316	366	297	5	3,482
TOTALS F	196 100.0	322 100.0	334 100.0	325 100.0	347 100.0	305 100.0	329 100.0	336 100.0	317 100.0	366 100.0	300	100.00	3,496 3,482 100.0
DELETED	00.	0.0	0.0	00.0	0.0	0.0	0.0	0	00.0	0.0	0.0	0.0	± 00.
8 DELETED	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	600
7	64 32.7	121 37.6	122	130	31.9	85 28.0	102	127 37.8	109 34.5	124 33.9	128 43.1	26.7	1,226 1,226 35.2
9	11	2.5	17	3.4	15	3.0	10 3.1	4.4	13	22 6.0	13	0.0	143 143 4.1
E .	26 13.3	36	35 10.5	37	11.9	33 10.9	33 10.1	28 8.3	11.7	53 14.5	32 10.8	0.0	391 391 11.2
4	10.2	23	24 7.2	23	28 8.1	33 10.9	33 10.1	27 8.0	20 6.3	28 7.7	10.4	6.7	291 291 8.4
E !	9.2	37	43 12.9	35 10.8	36	38	48	9.8	50 15.8	12.8	9.8	20.0	417 417 12.0
7	10.7	6.5	26 7.8	23	39 11.3	9.5	932	9.2	7.9	8.5	6.4	13.3	299 299 8 . 6
- !	0.4	9.0	20 6.0	5.2	8.4	20 6.6	6.4	26 7.7	20 6.3	3.8	4.0	33.3	222 222 6 . 4
0	13.8	47	46 13.8	49 15.1	47 13.6	57 18.8	14.7	14.9	13.3	12.8	11.1	0.0	493 493 14.2
	Row 7	Let Row 2	Row %	Row % 4	Aow x	Row (6	ROL X	Curdy &	S. 2, 4 9	0~1 10 Row %	Row 11	Row 12	TOTALS REVISED ROW %

က

JUL 11, 1985 RUNNING BRODY MEDIA TABLES FOR RXS

ANALYSIS 2

Le - un the party 873	
	1984:RXSECT FO1A 1984:RXSECT MONTH INTVW
ANALYSIS 2	VARIABLE V402 STRATA(ROW) V105

TOTALS REVISED	168	274	287	276	299	247	279	286	275	319	246	0	2,956
TOTALS	196 100.0	322 100.0	334 100.0	325 100.0	347	305 100.0	329 100.0	336 100.0	317	366 100.0	300 100.0	19 0.0	3,496 2,956 100.0
9 DELETED	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0
8 DELETED	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	600
ស	3.6	1.8	0.7	1.1	46.	3.2	0.7	0.3	1.80.	6.0	4.0	000	4. 4.1
4	34	46 16.8	44	48	62 20.7	38	15.1	14.7	14.9	35	11.8	00	461 461 15.6
8	80 47.6	116	80 27.9	93 33.7	113 37.8	36.8	110	102	102	98 30.7	65 26.4	00	1,050 1,050 35.5
2	22.727	20.8	≲, 95 33.1	478 71	12, 71	44 C 75	26.2	Fq 71	ين 19.6	95 29.8	73 29.7	00	762 762 762 25.8
-	12.5	18.2	23.0	22.1	16.4	35	18.6	24.5	73	27.6	31.7	0.0	643 643 21.8
DELETED	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	529 0.0
	- %	24 10	m ¾	4%	n %	% 0	78	ω×	o ><	ō ×	= ×	<u>51.95</u>	
	Row	Row	ROW	Row	Row	Row	Row	ROW	ROW	Row	Row	R ⊗	TOTALS REVISED ROW %

ANALYSIS 3

EWSPAPER	NONTH INTOK
#DAYS READ NEWSPAPER	1984:RXSECT N
V403	V 105
VARIABLE	STRATA(ROW)

	-	-	7	m	4	Ω.	9	7	9 DELETED	TOTALS	REVISED
Row ¥	1 32 %	15	18	9.4	1.7	18	2.0	86 43.9	0.0	196 100.0	196
Row	2 48 14.9	21	34	24	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4. 4.3		155	0.0	322 100.0	322
Row	3 46 13.8		22	25	17	4.5	12	159 47.7	0.0	334 100.0	333
Row	4 4 4 8 8 . 4 1 . 8	21	5.8	27 8.3	23	4.0	15	159 48.9	0.0	325 100.0	325
Row	52 15.0	27 7.8	26	8.4	6.4	5.5	4.9	154	0.0	347	346
Row	40 13.1	; ; ;	8.2	21	4.9	7.2	2.6	148	0.0	305 100.0	305
Row	7 55 % 16.7		38	6.7	20	5.8 8.8	2.4	141	0.0	329 100.0	329
Row	8 59 % 17.6	6.3	9.8 8.9	23	20 6.0	19	3.6	152	0.0	336 100.0	336
Row	9 41 % 12.9	; ; ;	24	25	15	18	3.5	157	0.0	317	317
ROW	10 51 % 13.9	3.8	21	35	4 18	19	15	176	0.0	366 100.0	366
Row 1	47 15.7		14	11.0	21	5.0	13	128 42.7		300 100.0	300
12 Row %	7% 15.8	5.3	10.5	5 - 6	10.5	10.5	0.0	42.1	0.0	19 0.001	\$
TOTALS REVISED ROW %	- 2007	281 281 8.0	273 273 7.8	274 274 7.8	206 206 5.9	193 193 5.5	122 122 3.5	1,623 1,623 46.5	- 700 0.0	3,496 3,494 100.0	3,494

ល

ANALYSIS 4

VARIABLE	R407	ATTN	NEWS	ART	RE	ATTN NEWS ART RE CAM
SIKAIA(ROM)	7105	1984:	RXSEC		INT	3>+ZI

	-	7	8	USKUM	Nonis	6			
	1			45	25,	DELETED	TOTALS	TOTALS REVISED	
	6.6	11.7	34.7	46 23.5	46 23.5	0.0	196 100.0	196	
	6.9	10.0	128	69 21.6	21.3	0.0	322 100.0	319	
	12.3	53 15.9	108 32.4	59	72 21.6	0.0	334	333	
	30 6.9	7 17.4	90 28.0		79	0.0	325 100.0	322	
	26 7.5	7. √ 12.5	112		22.3	0.0	347	345	
9%	7.2	14.1	114 37.5	63 20.7	20.4	0.0	305 100.0	304	
	10.0	52 15.8	107	63	74	0.0	329 100.0	329	
	11.9	16.1	28.0	69 20.5	23.5	0.0	336 100.0	336	
	12.9	2 814.8	91 28.7	83	17.4	0.0	317	317	
	13.4	≥ 79 >21.6		52	19.2	0.0	366 100.0	365	
	16.3	17.7	87 29.0	50	61	0.0	300 100.0	300	
	21.1	10.5	42.1	10.52	15.8	0	19	6	
	370 370 10.6	537 537 15.4	1, 122 1, 122 32.2	710 710 20.4	746 746 21.4	00.0	3,496 3,485 100.0	3,485	

Ĺ

d

	ľ	۰
	٠	۹
		t
	1	

ATIONS**	
**CORREL	

TABLE 9

R409 #HRS WATCH ED DEM	-0.3092 0.6430 -0.2817 -0.2808
V408 WATCHDEMCN #	-0.4561 -0.5764 -0.3510 0.2539 0.3008 0.2611
R407 ATTN NEWS V	0.2276 -0.2972 0.2367 -0.2620 0.3474 0.3419
V403 #DAYS READ NEWSPAPER	-0.5755 -0.1321 0.1649 -0.1378 0.1599 -0.2365 -0.2365
R402 ATTNTVNEWS RE CAMPGN	-0.1790 0.4475 0.3466 -0.3435 0.3184 -0.3392 0.4003 0.3443
DAYS WTCH AND NATHENS	-0.6636 0.2386 -0.2948 0.2905 0.2905 -0.3004 0.3286 -0.3486 0.3486
R5 OPINIONATI ON	-0.1809 0.2063 0.2063 0.2389 0.1725 -0.1389 0.1789 0.2129
R2 POLITICAL INVOLVEMEN	0.0939 -0.1392 -0.2587 -0.1015 -0.1355 -0.1355 -0.1369 -1.103
R1 POLITICAL INTEREST	0.3612 0.2935 0.2935 0.4681 0.4717 0.2787 0.2561 0.3929 0.3418
	T:: HIR2 V403 V403 V403 V408 R407 V410 R4113 R4113 R4113 R4115
	1 - H! POLITICAL INVOLVEMENT! HIRZ 1 - H! OPINIONATION 1 - LO 2 - Lo DAYS WTCH NATNL NEWS V401 1 - HI ATTNTVNEWS:RE CAMPGN R402 C - LO MDAYS READ NEWSPAPER V403 C - LO MDAYS READ NEWSPAPER V403 C - LO MATCH DEMCNV C - LO MHRS WATCHED DEM R407 I - H

0.4895

0.5412 0.4736 -0.0989 3.13 secs

-0.2843 -0.3340 -0.2835 -0.0/67 \$ 2.10

#HRSWATCHEDREP R411 -0.5087
WATCH DEBATE.1 R413 0.2929
WATCH 2ND DEBATE R415 0.3443
WATCH 2ND DEBATE R417 0.3315
-0.0464
***** Normal termination of MDC

V410 R411 R413 R415 1984:RXSEC #HRSWATCHE WATCH DEBA WATCH 2ND T F04 DREP TE.1 DEBATE

OSIRIS IV MONITOR SYSTEM 09:28:15 JUL 30, 1985

***** The last command has been processed. 'Bye.