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Abstract

Every two years in the U.S., 435 congressional elections take place that scholars study

using data from the National Election Studies (NES) survey of the American

electorate. With a focus on sampling, this article explores two issues: (1) How best to

design a national election study if the aim is to understand voting behavior within and

across subnational contexts; and (2) How, by comparison, the existing NES surveys

have been designed. Although our arguments speci�cally address how one should

sample individuals and congressional districts in the U.S., our conclusions apply to

any situation where one is sampling micro-level units nested within diverse and

in
uential macro-level contexts.



Introduction

Data from national election studies are often used to study voting behavior in subnational

electoral districts. In the United States, the National Election Studies (NES) surveys the

American electorate every two years, collecting data relevant to explaining election outcomes at

the national (presidential) and subnational (congressional) level. Although national survey data

are valuable for studying each type of election, the fact that congressional elections are inherently

subnational events has implications for survey design. In any given election year, 435 di�erent

contests take place across the country, in districts with varying characteristics, with varying pairs

of candidates running varying election campaigns. Hence, the questions we address in this paper

arise: How should one design a national election study in order to best study these diverse

subnational contests? And, how, by comparison, have the American National Election Studies

been designed?

These are large questions, and, if left unfocused, larger than we can confront in this paper.

We focus, therefore, on one crucial aspect of the design of a national survey: the sample design.

Although sampling considerations are important to the design of any survey, they are particularly

important in the kind of case we have at hand|where individuals from all across the nation are

surveyed concerning the particular elections taking place within the districts in which they reside.

In order to analyze these elections fruitfully, scholars must link micro-level survey data to

macro-level data on attributes of the districts, the candidates, and the campaigns. As we will

demonstrate, the e�ectiveness of the resulting analysis depends, to an important extent, on how

the survey sample is designed.

In what follows we develop our arguments with respect to the problem of sampling citizens

within and across congressional districts in the United States. The sampling issues we confront,

however, are much more general than this. They arise any time that one is sampling micro-level

units nested within diverse and in
uential macro-level contexts. They arise, for example, for

researchers designing survey research on voting in U.S. presidential elections, in that presidential

campaigns are waged very di�erently across the 50 U.S. states (Shaw 1999a, Shaw 1999b). If that

state-by-state variation in
uences how voters make their choices, then researchers must confront

how to sample voters within and across states. In this case, as with the case of congressional
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electoral research that we address in detail, below, sampling designs constrain what one will be

able to learn. We �rst elaborate this point through example, by considering two contrasting

survey designs.

Two Contrasting Designs

Imagine a design where 3000 eligible voters are selected at random within a single congressional

district (CD), which, itself, is selected at random from within the 435 congressional districts in

the U.S. With these data, we could study how various individual-level explanatory variables a�ect

a dependent variable like vote choice in this election, although we could not draw conclusions

from such �ndings about congressional elections in general. More importantly, we could not study

how district, candidate, or campaign characteristics in
uence how citizens vote, since the study

design generates no variation on such variables. For the same reason, we could not study how

CD-level characteristics interact with individual-level characteristics in in
uencing the vote. As a

consequence, our model of the vote will be incomplete, and hence inadequate for explaining the

election outcome even within the congressional district we studied. In this design, any e�ect of

CD-level variables is operating in a wholly unobserved fashion. Even with data on 3000 eligible

voters, we could not fully explain why people voted, why they voted the way they did, or why

candidate A ended up beating candidate B.1

By contrast, imagine a design in which 100 congressional districts are �rst sampled at

random, and then within each CD 30 eligible voters are randomly selected.2 Like the �rst design,

we could use the sample of 3000 respondents to evaluate the e�ects of individual-level

characteristics like partisan identi�cation. Since this design builds in variation at the CD-level, we

could also study how district, campaign, and candidate characteristics in
uence the vote

(assuming we gather the requisite data at the CD-level). For the same reason, we could study the

interaction of CD- and individual-level explanatory variables, asking, for example, whether the

1To illustrate, imagine that our sampled CD involves a highly contested race with a Democratic incumbent in a

district where voters are no more Democratic than Republican in their party identi�cation. Let's say that the

Democrat wins by a narrow margin in part because of the e�ect of incumbency|i.e., because voters are more likely

to cast their votes for an incumbent than a non-incumbent, ceteris paribus. We cannot estimate this e�ect, since we

only observe one race, and hence our explanation of the vote will be incomplete. Still, since there is no variance on

this or any other CD-level variable in our study, our estimates of the e�ects of individual-level variables like party

identi�cation are not biased; they are simply not generalizable. For example, the e�ect of party identi�cation in this

district might be weaker than the e�ect of party identi�cation in races with open seats, and we would not know it.
2This is a two-stage cluster sample design. Assuming that each CD has the same number of eligible voters, it

generates an equal probability sample of eligible voters in the US.
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e�ect of party identi�cation depends upon the nature of the campaign. Since respondents are

sampled at random within districts and the number per district is relatively large (n=30), we

could also aggregate responses within districts to generate contextual independent variables (e.g.,

\climate of opinion" variables), or could link the aggregated survey �ndings to data on members

of Congress, as did Miller & Stokes (1963) in their study of representation. We could even draw

district-level conclusions about the behavior of voters or about election outcomes, although the

within-district n of 30 is limiting in this respect. However, since both districts and respondents

are sampled at random, we could pursue the same kind of exercise for particular district types.

For example, we could demonstrate the extent to which the outcome of open-seat contests hinged

on candidate quality as opposed to the partisanship of the district's voters, employing the \Level

Importance" technique described by Achen (1982).3 Since the CDs are sampled at random within

the nation, we could draw further conclusions from the data about the overall pattern of

congressional election results in the nation as a whole.

These two designs di�er in the number of CDs sampled (which we will refer to as \J") and

the number of respondents per district (n). The �rst involves a simple random sample (n=3000,

within one CD), whereas the second involves a two-stage, cluster sample; �rst a sample of CDs

(clusters) is selected (J=100), and then individuals are chosen within CDs (n=30). Both designs

produce an overall sample (N) of 3000 eligible voters. Neither design involves strati�cation.

Strati�cation in the �rst design would involve sorting the population of eligible voters into

categories on one or more stratifying variables before sampling. Within each stratum, respondents

would be sampled in proportion to their population frequency if one was striving to achieve an

equal probability design. This procedure would ensure that the sample percentage of respondents

within a stratum equaled the population percentage, and would increase the power4 of statistical

tests involving dependent variables that were correlated with the stratifying variable(s)

(Kish 1965, Judd, Smith & Kidder 1991). Stratifying also enables one to over-sample within

strata|to sample disproportionately so as to increase the representation of a group that

3Sampling at random within a given CD ensures that sample �ndings can be generalized to the population of

eligible voters within that CD. Sampling CDs at random ensures that the sample �ndings concerning open-seat CDs

can be generalized to the population of open-seat CDs. Taken together, this means that the whole set of �ndings

can be generalized to the population of eligible voters living within open-seat CDs. If we had random sampling

within CDs but a purposive sample of open-seat CDs, we could only generalize results to the population of eligible

voters within the sampled CDs. If we had random sampling of CDs but a purposive sample of eligible voters within

CDs, then, strictly speaking, we would not be able to generalize any �ndings concerning individuals at all.
4The power of a test refers to the probability that one will reject the null hypothesis when the null hypothesis is

false (speci�cally, when a particular alternative hypothesis is true).
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otherwise would be represented in the sample in small numbers. In the second design, one could

repeat such a procedure at each sampling stage|stratifying the population of CDs before

selecting 100 of them at the �rst stage, and stratifying eligible voters within CDs before selecting

30 of them (within each CD) at the second stage. In important ways that we describe later,

strati�cation at the macro-level can be one of the most crucial aspects of the sample design.

In general, and as these examples have suggested, our ability to use national survey data to

understand congressional elections depends on how both districts and individuals are sampled

within the study. In order to explicate this point further, and to arrive at general guidelines for

sample design, we must consider how the data on individuals and on districts are gathered and

analyzed.

Multi-Level Data and Analysis

As illustrated by our examples as well as past research (e.g., Jacobson 1997, Brown &

Woods 1992, McPhee & Glaser 1962), studies of congressional elections are likely to require data

on eligible voters, the congressional districts, the campaigns run in those districts, and the

candidates contesting the election. This means that the analysis will be based on data

characterizing both micro- and macro-level units, integrated into one multi-level dataset. The

multi-level structure of the data creates special problems for conventional data analysis.

Below, we brie
y discuss the roles played by micro- and macro-level variables in analyses of

voting behavior in congressional elections. We then describe di�erent ways of analyzing the

integrated, multi-level data: (1) Aggregating all data to the macro-level, (2) treating all data as if

it were gathered at the micro-level, and (3) analyzing the micro- and macro-level data

simultaneously while also taking into account which data are gathered on which units|i.e.,

analyzing the data through multi-level modeling. This sets up our subsequent discussion of

sample design and statistical eÆciency, which assumes that the data will be analyzed through

multi-level modeling techniques.

Survey data provide individual-level information on the dependent variable|turnout, vote

choice, information about the candidates, and the like. Survey data also provide information on

individual characteristics that operate as independent variables, like partisan identi�cation, group

characteristics, and issue positions. And survey data provide information on individual

characteristics that either mediate or moderate the e�ects of contextual characteristics on
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outcomes. For example, a respondent's level of political awareness may in
uence how he or she

responds to the messages of the campaign (Zaller 1992).

Information on congressional district-level characteristics may be drawn from many sources.

Census data, oÆcial government records, campaign documents, and mass media sources all

contain relevant data. Even survey responses, if aggregated to the CD-level, can provide useful

data on candidates or campaigns. One could, for example, use the within-district mean placement

of a candidate on a liberal-conservative scale as an index of the candidate's ideology (although for

incumbents, of course, other measures of this are readily available, such as indices based on votes

cast in Congress). Such a procedure treats survey respondents as informants.5

The e�ects of CD-level variables can be thought of in two ways. First, the attributes of

districts, candidates, or campaigns can in
uence vote choices and electoral outcomes. This

in
uence might be either direct, or indirect|i.e., mediated by other CD-level or individual-level

characteristics. Second, they can identify contexts which in
uence how other variables

(individual- or CD- level) in
uence the vote and election outcome. In other words, they can

identify contexts across which the explanatory model varies.6

There are di�erent ways to represent the relationships between CD-level variables (as

independent) and individual-level variables (as both independent and dependent). One way would

be to aggregate the individual-level responses to the CD-level, by averaging across individuals

within each district, and then to regress an aggregated dependent variable on relevant CD-level

variables and on other aggregated individual-level variables. A simple version of this model is

depicted below:

Y
:j
= �0 + �1X :j

+ �2Zj
+E

j
(1)

In Equation 1, Y
:j
is the mean of the individual-level dependent variable within each CD,

5This requires that respondents be randomly sampled within CDs, and for a reliable measure, that the

within-district n be relatively large.
6If one expects the explanatory model to vary across CDs, then one would build interactions into the model.

When those interactions involve an individual-level variable in addition to a CD-level variable they are usually

called \cross-level interactions," a term we employ below. Cross-level interactions can be used to represent how

attributes of districts shape the in
uence exerted by some individual-level independent variable (e.g., the notion

that in an open-seat contest voters' party identi�cation has more e�ect on their votes than in races involving an

incumbent), but can also be used to represent how attributes of individuals shape the in
uence exerted by some

district-level independent variable (e.g., the notion that politically unsophisticated voters are more likely to be

a�ected by negative campaigning than politically sophisticated voters). See Fisher (1988) for an excellent discussion

of how the same interaction term can be used to estimate coeÆcients from very di�erent models.
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X
:j
is the mean of a relevant individual-level variable within each CD, and Z

j
is an attribute of

each district, measured at the district level (i.e. not using survey data). In such a regression, one

would be able to say something about how, say, mean turnout levels vary depending on whether

or not an incumbent is running. One problem with this method is that there is no guarantee that

the relationship found using aggregated individual-level variables will be the same as the

relationship found when using the disaggregated individual-level variables. This is the cross-level

inference problem (Achen & Shively 1995). Related, this model is incapable of representing

cross-level interactions, where the e�ects of micro-level variables vary across macro-level contexts,

or vice-versa. Another problem is that, since the typical survey includes many more individuals

than districts, the degrees of freedom available for hypothesis testing are often drastically reduced

via such aggregation. If the survey were using the second hypothetical design we described above,

this aggregate regression would have 100 degrees of freedom, despite the availability of

information about 3000 individuals.

Alternatively, one might be tempted to model all of the data at the individual level,

pretending, in e�ect, that we have 3000 observations at the CD-level rather than the true number,

100 (again, alluding to the second design example we presented above). Equation 2 presents such

a model. In this case, we've added a subscript of i to the CD-level variable Z.

Y
ij
= �0 + �1Xij

+ �2Zij
+E

ij
(2)

One problem with this method of modeling the data is that we do not have N = J � n (number

of districts � number of individuals per district) independent values of Z or of X. Rather, we

only observe J independent values of Z, and somewhere between J and N independent values of

X. OLS, in this case, would not estimate the correct standard errors.

The number of independent observations obtained in a multi-level design is called the

\e�ective N ." In a simple two-stage design like we described in our earlier example, the e�ective

N of macro-level units is J , the number of such units randomly sampled at the �rst stage.7 The

7If a multi-stage sample design is used where district selection occurs at a later stage, CDs will be clustered

within higher-level units and thus the e�ective N of CDs will be less than the total number represented in the

sample. Similarly, as long as the �rst stage involves sampling areas that contain more than one CD, then even if the

CD is not a sampling unit at later stages the e�ective N of CDs will be less than the number of CDs that fall into

the sample. As we describe later, this is true of the sample designs NES has used, with the exceptions of the 1978

and 1980 studies. To estimate the e�ective N in such cases, one would follow a procedure comparable to the one

used for estimating the e�ective N of micro-level units, which we describe next.
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e�ective N of micro-level units is more complicated. Because individuals are nested within

districts, the values that individual-level variables take on are not likely to be independent within

districts. Put another way, we would expect a sample of individuals chosen at random within a

district to be more similar to each other than a sample of individuals chosen at random from

within the population at large. The most common way to gauge this homogeneity is to summarize

it using a statistic known as \rho", the \intraclass correlation coeÆcient" (�).8 The coeÆcient �

ranges from 0 to 1, where �=0 corresponds to the case where there is no tendency for individuals

nested within macro-level units to be similar to one another, and �=1 corresponds to the case

where all individuals nested within macro-level units are identical to one another.9 Kish (1965)

used this measure of homogeneity within clusters to calculate the e�ective N of observations for a

given individual-level variable, as depicted below (for the equal cluster size case).

e�ective N =
N

1 + (n� 1)�
=

Jn

1 + (n� 1)�
(4)

Equation 4 shows that, as the homogeneity within clusters (�) increases, then the e�ective N

decreases.10 Further, when holding the total sample size (N) constant, as the cluster size (n)

increases, then the e�ective N also decreases. Since N = J � n, what this means is that as n

increases and J decreases|that is, when the degree of clustering in the design increases|the

e�ective N of micro-level units decreases.

Despite the fact that we can identify the e�ective N for each of the variables in any given

model, the fact that the e�ective Ns vary across the variables still poses a problem for OLS.11

The most appropriate model for estimating e�ects with nested data is the hierarchical, or

multi-level model. The multi-level model was developed to represent how the behavior of

8Kish (1965, page 161) introduced this statistic and called it \roh." Most other authors have depicted \rho" by

the Greek letter �, which is the symbol Kish assigned to this statistic when using it in mathematical formulas. Kish

chose \roh" because it is an acronym for \rate of homogeneity."
9Equation 3 shows one way to depict the formula for �.

� =
variance between macro-units

total variance
=

�
2

�2 + �2
(3)

In this formula, �2 represents the between-group variance, and �
2 represents the within-group variance. As this

formula suggests, � indicates the proportion of the total variance in some variable that is attributable to the

macro-level unit. There are numerous methods of estimating �. Later in this paper we use the so-called \ANOVA

method" where �̂ =
(F�1)J=n

1+(F�1)J=n
(Snijders & Bosker 1999).

10When � = 0 the e�ective N is simply N , and when � = 1 (i.e., all individuals nested within CDs take on the

same value) the e�ective N is J .
11OLS is no longer BLUE. What is more, OLS yields biased coeÆcient estimates if the model estimated involves

cross-level interactions (See, e.g., Kreft & Leeuw 1998, especially Chapter 2).
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individuals is in
uenced by their own (micro-level) characteristics as well as the characteristics of

the macro-level contexts in which they are nested (CDs, in our case). It enables one to

simultaneously estimate the e�ects of micro-level variables, macro-level variables, and interaction

variables, including cross-level interactions, all while taking into account the multi-level nature of

the data. In the Appendix, we provide a very brief description of the model. Jones & Steenbergen

(1997) provide a very useful overview, illustrating their discussion with examples from political

science. Further information can be found in Bryk & Raudenbush (1992), Goldstein (1999), Kreft

& Leeuw (1998), Longford (1993), Pinheiro & Bates (2000), and Snijders & Bosker (1999).

For our purposes, what is important is how various sample design decisions in
uence

statistical eÆciency and the power of hypothesis tests when multi-level models are estimated. We

take up this issue next.

Sample Design and EÆciency in the Estimation of Macro-level E�ects

Number of CDs (J) and Respondents per CD (n)

As our previous discussion has implied, all other things held constant, statistical eÆciency in

estimating macro-level e�ects is enhanced by increasing the number of macro-level units|in our

case, CDs. This is simply a matter of the e�ective N of macro-level units. In any analysis

involving CD-level explanatory variables, the degrees of freedom available for estimating CD-level

e�ects is determined by taking into account the number of CDs, rather than the number of

individuals, that fall into the sample. Hence, the eÆciency of statistical estimates (and the power

of hypothesis tests) is strongly in
uenced by the number of CDs sampled.

A relevant general remark is that the sample size at the highest level is usually the

most restrictive element in the design. For example, a two-level design with 10 groups,

i.e. a macro-level sample size of 10, is at least as uncomfortable as a single-level design

with a sample size of 10. Requirements on the sample size at the highest level, for a

hierarchical linear model with q explanatory variables at this level, are at least as

stringent as requirements on the sample size in a single level design with q explanatory

variables. (Snijders & Bosker 1999, page 140)

At the same time, when one is estimating multi-level models, then both the number of

macro-level units (J) and the number of micro-level units nested within them (n), and, hence, the

total number of micro-level units (N), a�ects the eÆciency of one's estimates, as does � (Kreft &

Leeuw 1998, Mok 1995, Snijders & Bosker 1999).12 To see this, consider Figure 1, which uses an

12The estimators of the coeÆcients in multi-level models are consistent, but not unbiased. As Mok (1995) has
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algorithm developed by Raudenbush (1997) to show how the power of statistical tests concerning

the e�ects of CD-level variables is in
uenced by J , n, and �.13

[Figure 1 about here.]

In this simulation, we stipulate a very simple model, in which one macro-level variable is seen

as a�ecting a micro-level dependent variable. We assume that the true e�ect, gauged in terms of

a standardized regression coeÆcient, is .1.14 The two panels show how increasing J and n

increase the power of a hypothesis test concerning the e�ect of the macro-level variable. The left

panel portrays the case where � = :05 (i.e. the case where individuals are not very homogeneous

within districts) and the right panel portrays the case where � = :25 (i.e. the case where

individuals are quite homogeneous within districts).15 Thus, in this simulation, we are allowing 3

aspects of the design to vary: the number of macro-units (J), the number of micro-units per

macro-unit (n), and the amount of homogeneity among micro-units that are nested within

macro-level units (�). The results in Figure 1 show that � plays an important role in determining

the power of tests concerning the macro-level variable; the higher the �, the lower the power.

Further, increasing both J and n|and, hence, N|also increases power. More importantly,

however, power is much more dramatically enhanced by increasing J than by increasing n.16

To further illustrate this tradeo�, we also used a simulation to estimate the standard errors

associated with coeÆcients in a more complex multi-level model. The model called for one

micro-level dependent variable to be regressed on (a) one micro-level independent variable, (b)

two CD-level independent variables, and (c) two cross-level interactions|i.e., the interactions

between each CD-level variable and the micro-level independent variable. For example, one might

think of this model as regressing a summary index of knowledge about the candidates on the

respondent's level of political awareness, whether or not the election involved an open-seat,

demonstrated, increasing J also diminishes the degree of bias in the coeÆcient estimates. \. . . consistent with advice

given in the classical literature on cluster sampling designs, if resources were available for a sample size n,

comprising J schools with I students from each school, then less bias and more eÆciency would be expected from

sample designs involving more schools (large J), and fewer students per schools (small I) than sample designs

involving fewer schools (small J), and more students per school (large I)"(Mok 1995, page 6).
13Professor Raudenbush sent us the SAS code to implement his algorithm, and we modi�ed it for use in Splus.
14The program actually requires us to stipulate an \e�ect size". We stipulated an e�ect size of .2, which

corresponds to a standardized regression (correlation) coeÆcient of .1 (Snijders & Bosker 1999, page 147).
15Estimated values of � calculated using NES data are typically in the .05 to .3 range. See below, Table 6.
16As Figure 1 also shows, the e�ect on power (in testing for macro-level e�ects) of increasing the within-district

sample size, n, depends on whether � is small or large. If � is small (.05 in the simulation), then increasing the n is

somewhat helpful. If � is large (.25 in the simulation), then increasing the n is not helpful. Similarly, a high � limits

the improvement in power produced by increasing J .
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whether or not the race was competitive, and the interaction between these CD-level

characteristics and the respondent's political awareness level.

This simulation holds the total number of micro-level cases (N) constant, while varying J

and n. Hence, as J is increased, n is necessarily decreased, and vice-versa. Figure 2 shows how

the relative sizes of J and n a�ect the standard errors of the independent variables.17 In this

�gure, the x-axis shows the number of congressional districts (J), leaving the number of cases

sampled within each district (n) implicit. As J increases, however, n is decreasing. As Figure 2

shows, increasing J has an enormous e�ect on the size of the standard errors associated with the

macro-level variables. Yet, in this simulation, and as a general matter, the gains (in terms of

smaller standard errors) diminish as J increases. The standard errors of the micro-level variables,

and of the cross-level interactions, also decrease as J increases, but much less dramatically. This

pattern re
ects how the e�ective Ns are changing. For the macro-level variables, the e�ective N

is J . For the micro-level variables and cross-level interactions, the e�ective N is changing as the

clustering (as indexed by n, given a �xed N) in the sample decreases.

[Figure 2 about here.]

The idea that particular characteristics of an electoral context shape how individuals make

their voting decisions often seems married to an intuition that one should sample a very large

number of individuals with particular electoral contexts. As we have seen, however, this is

generally not an optimal design strategy. It is much more advantageous to the analyst if J is

increased at the expense of n.

If one were especially interested in generalizing about a particular election, then it would, of

course, make sense to draw a large and representative sample within the electoral district. That is

why, for example, in order to facilitate the study of U.S. Presidential elections, the NES strives to

17We used the program PINT (Power in Two-Level Designs) developed by Tom Snijders and Roel Bosker

(Snijders & Bosker 1993). We de�ned the macro-level variables as dichotomous (each scored 0 and 1), with means

of .5 and variances of .25, and as uncorrelated with each other. We de�ned both independent and dependent

micro-level variables as standardized (mean 0 and variance 1), and set the correlation between the macro-level and

micro-level explanatory variables to 0. We set N=800, the variance of the residuals at the micro-level to .8, and the

variance/covariance matrix of the random coeÆcients (intercept and slope) to

�
:09 �:01

�:01 :0075

�
. Varying these

speci�cations does not alter general conclusions about the tradeo� between J and n as depicted in Figure 2, but it

does matter to the details. In particular, as the variation across electoral contexts in the slope and intercept of the

individual-level independent variable increases (i.e., as the main diagonals of the the matrix above increase),

increasing J at the expense of n becomes even more desirable.
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draw a large and nationally representative sample of eligible voters in the U.S.18 But scholars of

congressional elections are not typically interested in explaining the vote in a particular district,

nor are they likely to believe that the relevant model of the vote (or of other dependent variables)

takes a di�erent form in each of the 435 CDs in the U.S. Rather, they are likely to believe that

the model varies in systematic and explicit ways depending on the \type" of CD|whether, for

example, it involves an open seat or whether the race is highly contested. As such, what is

important for analysis is that the total number of individuals falling into each type of CD is not

unduly small.19 Having a large sample size within each CD of a given type is not necessary|nor,

as we have suggested, is it generally desirable.

Variances of, and intercorrelations among, CD-level variables

EÆciency in the estimation of causal parameters is also a function of the variance of the

explanatory variables as well as the degree of intercorrelation between them (or the linear

dependency among a set of three or more). In particular, statistical eÆciency in the estimation of

CD-level e�ects is enhanced when the variance on CD-level variables is maximized and the

intercorrelation between them is minimized.

These outcomes can be accomplished through strati�cation in the sampling procedure used

to generate survey respondents. In a multi-stage sample design, the probability that any one

individual falls into the sample is the product of the probability of selection at each stage. Thus,

one can sample disproportionately within strata at the �rst stage, so as to produce a desired

distribution of macro-level units on the stratifying variable, and then compensate at the second

stage if one desires an equal probability sample at the micro-level. If, for example, a certain type

of CD has a higher probability of selection into the sample than would be warranted by its

prevalence in the population, then one would sample individuals within such a CD at a lower rate

to compensate.

Both of these points can be clari�ed through the use of an example. Our example identi�es

two macro-level stratifying variables, both treated as dichotomous: whether or not the race

involves an open seat (Open), and whether or not the race is competitive (Competitive).

Although the general point illustrated by this example does not depend on the particular

18Even so, such a design is limited in that it lacks variation on explanatory variables that only vary across

nations, just as a large-scale study of one congressional district is limited by the absence of variation in explanatory

variables that distinguish districts, as we suggested earlier. The Comparative Study of Electoral Systems project

(CSES), of which the NES is a part, is a response to this kind of limitation.
19We illustrate this point via simulation in the next section.
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stratifying variables we have chosen, it is worth brie
y addressing why we selected them

nonetheless. There are two reasons.

First, they illustrate a general strati�cation principle: Select stratifying variables that one

expects to be important to explaining key dependent variables. The gains from strati�cation, in

terms of statistical eÆciency, are a function of the extent to which the stratifying variable is

related to the dependent variable in question, whether causally or spuriously (Kish 1965).

Research on congressional elections suggests that incumbency and competitiveness|and variables

correlated with these|are important to understanding many phenomena of interest.20

Strati�cation is helpful whether or not one samples macro-level units within strata in proportion

to their population frequency, and whether or not one eventually seeks an equal probability

sample of micro-level units. Yet, as we will show, stratifying on key macro-level variables also

enables one to employ disproportionate sampling so as to enhance statistical eÆciency in

estimating macro-level e�ects.21

The second reason is practicality. We have data on these variables for congressional districts

in the U.S. from 1948-1998. Later, we generate simulations and present analyses that take

advantage of this fact. Further, we have chosen variables easily represented as dichotomies so as

to keep the example simple. Thus, we avoided other variables, such as the partisan balance in the

district, that might be strong candidates for a strati�cation scheme.

Suppose, then, that the population distribution of CDs and eligible voters across the four

cells de�ned by these two stratifying variables is as given in Table 1. (We have used unrealistic

numbers here|with a total of 8 million people scattered across 800 CDs|to keep things simple.)

[Table 1 about here.]

In design A, the population is strati�ed by the two macro-level variables, Open and Competitive,

CDs are sampled within strata in proportion to their frequency in the population, and then an

20The variable Competitive is meant to be an indicator of how closely contested the race is, and hence an

indicator of campaign intensity(Westlye 1991). Later in this paper we gauge competitiveness by using information

on the electoral margin of victory. Since this kind of information is only available after the election is over, it is not

plausible to think of this as information that one could rely upon to make strati�cation decisions. Margin of victory

will, however, be correlated with other CD-level characteristics, like the partisan balance in the district, that one

should be able to measure in advance of the election.
21If one samples proportionately within strata one can ensure that the percentage of sample units with a given

attribute equals the percentage of population units with that attribute. This is an important bene�t when random

departures from such a result, which are to be expected without strati�cation, can seriously hamper the analysis.

We consider this bene�t of strati�cation in a later section. In this section we focus on the gains from

disproportionate strati�ed sampling.
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equal number of individuals is chosen at random within each CD so as to generate an equal

probability sample of individuals. This is shown in Table 2.

[Table 2 about here.]

In design B, the population is again strati�ed by the two CD-level variables, but now CDs are

sampled disproportionately in order to create an equal number of CDs in each of the four

strata|i.e., a balanced design at the CD-level. Then, an unequal number of individuals is chosen

at random within each CD so as to generate an equal probability sample of individuals. This

design is shown in Table 3.

[Table 3 about here.]

Both designs generate equal probability, representative samples of individuals, but they di�er

in the sample of CDs that is drawn and the pattern of clustering within CDs. In design A, only

20 of the 80 sampled CDs (25%) involve open-seat races, and only 20 (25%) are classi�ed as

competitive; taken together, only 10 (13%) sampled CDs involve competitive, open-seat races. In

design B, by contrast, the distribution of CDs is balanced on each of the stratifying variables, so

that each of the four cells contains 20 CDs (25%). Thinking only of the CD-level aspect of the

design, in design A the two stratifying variables have limited variances (.1875 in each case) and a

moderate positive correlation (.33). In design B, the two stratifying variables have maximum

variances (.25 in each case) and zero intercorrelation.

If all individual-level data were aggregated, so the analysis was performed at the CD-level

(i.e., our sample size in each design is 80), and we simply regressed some aggregated Y variable on

Open and Competitive, design B would be superior in that the two variables are uncorrelated and

each have maximum variance, and hence the standard errors associated with estimates of their

e�ects would be smaller in design B than in design A.22 At the same time, the number of

individuals per CD is constant (n = 10) in design A but varies in design B (n = 5 or 25). This

means that design B introduces heteroskedasticity|the mean of an aggregated Y variable would

be estimated with varying reliability across the CDs (Hanushek & Jackson 1977, Chapter 6), and

GLS rather than OLS must be used to estimate the model. More importantly, this type of

22In a trivariate model, the standard error of each slope coeÆcient is a function of the variance in the stochastic

term, the sample size, the variance in the independent variable, and the correlation between the pair of independent

variables (Hanushek & Jackson 1977). The standard error diminishes as the variance in X increases and as the

correlation between the independent variables diminishes (approaches zero).
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analysis throws away information, as we suggested before, and would only be appropriate if one

were interested in cause and e�ect relationships at the CD-level, whereas most analysts studying

subnational elections are interested in explaining individual-level phenomena|or at least �rst

explaining individual-level phenomena and then using those �ndings to draw implications at the

CD- or national-level. This focus requires an analysis which retains individuals as the unit of

analysis.

If we work with the data at the individual level, and think of the simplest possible

analysis|regressing an individual-level Y on the two contextual variables using OLS|then the

two designs are equivalent with respect to a number of things that will in
uence the estimated

standard errors (1) the number of individuals (N=800), (2) the variances of Open and

Competitive (calculated with the individual-level data), and (3) the correlation between Open and

Competitive (calculated with the individual-level data). In such an analysis, the macro-level

variables are treated as attributes of individuals, such that all survey respondents living within,

say, a district with an open-seat race, would all be assigned the same value on Open. As far as

OLS is concerned, there is no di�erence between these macro-level and other, micro-level

variables. Hence, if we were estimating a simple regression model with OLS|which, as we argued

earlier, is not advisable|the features distinguishing design A and B would not produce

di�erences in their expected standard errors.

This is useful to notice, we think, but the much more important point concerns how the

designs a�ect statistical eÆciency when more appropriate models are estimated|multi-level

models which recognize that individuals are nested within macro-level units.

One di�erence between the designs that is taken into account in multi-level modeling

involves the e�ective N that each provides, which varies because of the di�erent clustering

entailed in each design. If we assume the intracluster correlation coeÆcient, �, is .2, we obtain the

e�ective Ns for each design that are depicted in Table 4.23

[Table 4 about here.]

This analysis suggests that design A is better in terms of the overall e�ective N , but that design

B increases the e�ective N in the strata that are sparsely populated, and produces something

close to parity in the e�ective sample size across the four cells.24

23Actually, � is likely to be variable across these cells, not constant at .2, but we set that complication aside.
24By increasing the e�ective N in the sparsely populated cells|for example, the open seat CDs in our
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Overall, then, design A is advantaged by its larger e�ective N , but design B is advantaged in

that it maximizes variance in the macro-level variables and minimizes their intercorrelation. As

this simple example demonstrates, whether designing a sample that is balanced at the CD-level

improves the eÆciency of one's estimates depends upon whether the eÆciency gain in terms of

greater variance in the macro-level variables and lower correlation between them outweighs the

eÆciency loss incurred by the smaller e�ective sample size.

To illustrate this tradeo� further, and to add more speci�city, we draw on the results of

simulations similar to the ones we described earlier, where we generated standard errors

associated with the coeÆcients of a multi-level model that included one micro-level explanatory

variable (Awareness), two macro-level explanatory variables (Open and Competitive), and the two

cross-level interactions. Here, our simulations build in the characteristics of the data implied by

design A and design B.25 Figure 3 shows the results. As would be expected, the standard errors

on Awareness and the cross-level interactions tend to be higher under design B than design A.

This re
ects design B's smaller e�ective N . But design B yields more precise estimates of the

e�ects of the macro-level variables. In this case, the bene�t from using design B is more

substantial than the loss, although the advantage is not overwhelming.

[Figure 3 about here.]

Figure 4 shows how the standard errors vary across the two designs when the distribution of

Open and Competitive are even more skewed, as is typically the case|with 7% of the races

involving open-seats and 13% of the races competitive|and when N and J are set at values more

typical of NES studies (1800 cases distributed across 120 CDs).26 When the population

example|design B facilitates subgroup analysis. There are e�ectively 112 individual-level cases in open seat

districts in design B compared to 72 in design A.
25Scholars have given close attention to power in two-level designs characterized by equal cluster sizes, but have

not given any attention to designs, like our design B, characterized by unequal cluster sizes. Thus, while programs

like PINT will estimate standard errors in designs with equal cluster sizes, they do not recognize the possibility of

unequal cluster sizes. Hence, we developed our own simulations, using the lme package in Splus. For design A,

N=800, J=80, n=10, Open and Competitive each have means of .25, variances of .1875 and are correlated at .33.

For design B, N=800, J=80, the ns are either 5 or 25, and Open and Competitive have means of .5, maximum

variances (.25) and zero intercorrelation. All other parameters were set to the values given in footnote 17. For each

design, we ran 1000 simulations to generate our standard error estimates. The programs which generated the results

in Figures 3 and 4, can be found at http://socrates.berkeley.edu/~stoker/sampledesign.html. We are grateful to

Jos�e Pinheiro for helping us with the lme code.
26For design A, n=15 (1800/120). For design B, the average n=15, though the cluster sizes vary across cells of

the strati�cation matrix (from a minimum of 2 to a maximum of 50). For design A, the variance of Open is .062,

the variance of Competitive is .116, and their intercorrelation is .29. Design B again assumes maximum variance in

Open and Competitive (.25) and no intercorrelation. Other parameters were set to the values given in footnote 17.
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distribution of CD-level characteristics is highly skewed, a sampling plan like design A, which

simply reproduces that skewed distribution in the sample, can leave analysts with little power for

studying CD-level e�ects. For example, the estimated standard error on Open is almost .15,

which means that a regression coeÆcient of magnitude .25 would fail to achieve statistical

signi�cance at conventional levels.27 Design B, which balances the sample distribution of each

CD-level variable, substantially enhances power in this respect. That enhanced power, however,

does not come without cost. One pays some price in terms of the eÆciency with which micro-level

and cross-level e�ects are estimated.

[Figure 4 about here.]

Although a sample design that is balanced at the macro-level|like design B|can yield more

statistical power than one that is not, statistical eÆciency is still hampered by one constraint that

is common to both designs: the production of an equal probability sample of individuals. This is

most easily illustrated by considering the \realistic" version of design B. The constraints built

into that design|that N=1800, J=120, the two macro-level variables be uncorrelated and of

maximum variance (i.e., that 30 CDs from each stratum are chosen), and the design produce an

equal probability sample of micro-level units|together imply that the sample has dramatically

di�erent cluster sizes (n) across the CDs falling into the four cells of the stratifying table. In the

open/competitive cell, we have very few respondents per CD (60 total respondents across 30 CDs,

for an n of 2), but in the incumbent/non-competitive cell, we have many respondents per CD

(1500 total respondents across 30 CDs, for an n of 50). Greater eÆciency gains could obviously be

made if one did not insist on drawing an equal probability sample at the micro-level. One could

then select fewer respondents within the incumbent/non-competitive CDs, which would reduce

the average cluster size (n), and then increase the overall number of CDs sampled (J). One might

also increase the n of respondents selected in open-seat and competitive districts so as to facilitate

subgroup analysis.28

In sum, sampling so as to produce greater balance in the distribution of macro-level units

across the stratifying variables|and thus, maximizing their variances and minimizing their

27Since the dependent variables are standardized in these simulations, this means that a true e�ect size of 1
4

standard deviation would not be discernable.
28Simulations comparing design A (equal probability at both stages) and design B (balanced at the macro-level)

with a design that is balanced at both levels demonstrate that the latter is far superior in terms of statistical

eÆciency in estimating both macro-level e�ects and cross-level interaction e�ects. See

http://socrates.berkeley.edu/~stoker/sampledesign.html.
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intercorrelation|can substantially enhance statistical power in estimating macro-level e�ects.

This is particularly the case when the stratifying variables identify relatively rare attributes|like

the presence of an open seat, or existence of a highly competitive congressional race. One can

achieve even greater gains in eÆciency if the design need not produce an equal-probability sample

at the individual level (which tends to produce large, ineÆcient clusters); resources that otherwise

must be devoted to increasing n can instead be directed toward increasing J .

Sample Design and the NES

Although the sample design that the NES has employed over the years has varied, it has typically

involved a multi-stage procedure like the one described below for 1988.

The 1988 NES is based on a multi-stage area probability sample selected from the

survey research center's (SRC) [1980] national sample design. Identi�cation of the

1988 NES sample respondents was conducted using a four stage sampling process|a

primary stage sampling of U.S. standard metropolitan statistical areas (SMSAs) (see

census de�nitions in appendix) and counties, followed by a second stage sampling of

area segments, a third stage sampling of housing units within sampled area segments

and concluding with the random selection of a single respondent from selected housing

units. (Miller 1988)

From the 1988 sampling design emerged 45 1st-stage geographic areas, of which 11 entered at the

�rst stage with a probability of 1 (all large cities), and 34 entered with probability proportionate

to their population size. A total of 2040 individuals living in 135 congressional districts responded

to the 1988 NES survey, an average of about 15 individuals per district. CDs were partially

nested within primary sampling units, so that the e�ective N of CDs is in the 105-109 range.29

[Table 5 about here.]

29Calculating the e�ective N requires taking into account the degree of clustering in the sample design and the

intraclass correlation for any given variable of interest. We estimated the intraclass correlation (�) for two variables,

one characterizing the race as open or as involving an incumbent (Open), and one characterizing the margin of

victory (Margin). The analysis examined the degree to which CDs were clustered within primary sampling units

(i.e., what percentage of the total variation in the two variables was between-PSU variation as opposed to

within-PSU variation). For Open the �̂ was .14 and for Margin the �̂ was .12, and the n was, on average, 3. This

translates into an e�ective N of 105 and 109, respectively. In this analysis and in others that follow we relied upon

data on U.S. congressional districts over the 1948-1998 period. We started with machine-readable data put together

by Gary King, which covered the 1948-1990 period (ICPSR #6311). We extended the dataset through 1998 using

data provided to us by Jennifer Steen. We also linked these data to the NES survey data over the period, allowing us

to characterize the CDs sampled by the NES and to identify how they di�ered from the population of CDs. In such

analyses, we excluded CDs from Hawaii and Alaska since those states are excluded from the NES sampling frame.
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Table 5 provides summary information about the sampling design of the NES for each year

that congressional district data were gathered since 1956 (a total of 21 years).30 The only time

that the NES departed from its basic area probability sampling design was in 1978 and 1980,

when the NES employed a multi-stage procedure that used the CD as the 1st-stage sampling unit.

In 1978, 108 CDs were selected at the �rst stage (J), and roughly 25 individuals per CD (n) were

selected in later stages. CDs were �rst strati�ed on the basis of a combination of variables that

included geographic region, state, urbanization, and recent voting behavior. The individuals

sampled within CDs were clustered within lower units, so that the e�ective N within the districts

is substantially lower than 25, on average. As such, the within-district �ndings can not be

generalized to the CD as a whole.

J, n, and �

Figure 5 contains boxplots which depict the number of respondents per congressional district

(n), and list the number of CDs (J), across the NES studies from 1956-1998. The number of CDs

varies over time from a low of 108 (in 1978) to a high of 246 (in 1996), with an average of 150.

Most of the over-time variation in the number of CDs falling into the sample is a function of how

many many units were selected at the 1st stage of the multi-stage design (the number of primary

sampling units, or PSUs; see Table 5). The unusually high number of CDs in

1996|246|occurred because the study included respondents drawn from both the 1990 PSUs

and the 1980 PSUs.31 The number of PSUs represented in the NES data, therefore, was larger in

1996 than in any other NES study over the period.

The within-district sample sizes ranged from a low of 1 to a high of 90. Except for 1978 and

1980, in each year the distribution of cluster sizes tended to be skewed to the left, with a long

right tail. Thus the median n tends to be in the range of 6-10, while the means are often

substantially larger. Because urban areas fall into the typical NES sample with a high probability

at the �rst stage, most of the CDs with a small n are urban and most with a large n are rural. In

other words, NES respondents are more clustered in rural, than in urban CDs.32

30Additional information about the NES study designs is available at http://www.umich.edu/~nes.
31Every ten years, after the decennial census, the University of Michigan Survey Research Center redesigns its

sampling frame and selects a new set of PSUs. Hence, NES samples are typically drawn from one set of PSUs for

four to �ve election studies, and then when the sampling frame is redesigned, drawn from a new set of PSUs (see

Table 5). In the 1996 NES, the panel respondents had originally been selected in 1992 from the 1980 SRC sampling

frame, while the fresh cross-section respondents were drawn from the 1990 SRC sampling frame.
32Since the 1st stage of the sampling procedure is only redesigned every decade, following the decennial census,

there is a very substantial departure from independence in the sampling of CDs and individuals over time. With

respect to CDs, the extent of this departure is illustrated in the Appendix, in Figure A1. Along the X-axis is the
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[Figure 5 about here.]

It is ironic that the smallest J (108) and the largest average n (25) over the time series

occurs in 1978, the year NES �rst used the CD as a primary sampling unit in an e�ort to advance

scholars' ability to study congressional elections. Although there are reasons to seek a \large"

within-district n, as we have suggested|e.g., if one seeks to generalize to a particular district; to

produce within-district \climate of opinion" estimates; to use respondents as informants about

the district, candidates or campaigns; or to generate reliable aggregate district opinion measures

for use in studies of representation|all of these purposes require a large e�ective N of

respondents within districts. As mentioned previously, because of the degree of within-district

clustering in the 1978 sample design, this condition is not met. In any event, a large sample of

congressional districts still remains very important, in that it substantially a�ects one's ability to

draw conclusions from the data about both the micro- and the macro-level dynamics at work.

One could argue, then, that the 1978 design would have been enhanced by increasing J at the

expense of n.

As we pointed out earlier, the e�ective N in a cluster design is a function of � (rho) as well

as J and n. For micro-level variables, � indicates the extent to which respondents are similar to

one another within macro-level units. Table 6 shows typical values of �̂ for an illustrative set of

NES variables, based on treating respondents as nested within congressional districts. As would

be expected, the �̂ values are largest when the variables concern CD-speci�c stimuli. Notice, for

example, that the �̂ is higher for Incumbent Approval than for Congress Approval. That is, the

within-district similarity is higher when respondents are asked about their own district's

incumbent than when they are asked about Congress.33 Notice also that the values of �̂ are

number of times that a CD fell into the NES sample over the 21 election studies between 1956 and 1998 where CD

information is available from NES. The height of the bars represents how many CDs fell into each category along

the X-axis. Thus, for example, the �rst bar shows that 53 out of 359 (14.8%) CDs were never represented in any

NES sample over the period, while 2 (.6%) were represented 20 out of 21 times. The area under the illustrated

density curve indicates the expected percentages under an assumption of independence of the draws. This �gure

can be viewed as illustrative, but no more, in that it builds in a problematic assumption|namely, that the identity

of a given CD is unchanging over the entire time span. In developing this �gure, we �rst threw out all CDs that did

not \endure" over the 1956-1998 period. Some were created after 1956, as a function of redistricting, and some that

once existed later disappeared, again because of redistricting. By our count, a total of 512 CDs were in existence for

at least one election over the 32 years; 359 were in existence for the entire period. This assumes, however, that any

district which retained its unique identifying number over time, is actually the same unit at each point in time.

This, however, is clearly wrong. Minnesota District 2, for example, may have completely been transformed in its

boundaries, perhaps several times, over the period. The over-time dependence in the sample of CDs only introduces

an eÆciency problem for research that analyzes data at the CD-level over time. Yet such research cannot itself be

undertaken without solving the seemingly intractable \unit change" problem just described.
33When one is gathering data on respondents' judgments and choices concerning the candidates in their own
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substantially higher for two speci�c variables in the set: Vote Choice, and Incumbent's Perceived

Ideology (average �̂ values of .275 and .213, respectively). What such high values of �̂ re
ect is

the explanatory importance of CD-level variables. There is more homogeneity within districts on

variables like Vote Choice and Incumbent's Perceived Ideology than on the others in the table;

correspondingly, more of the total variation in these two variables is between-district variation.

[Table 6 about here.]

These high values of �̂ convey two points simultaneously. First, they remind us, vividly, that

CD-level variables are likely to be very important to explaining why voters make the choices they

do. Understanding variation in the vote requires understanding how the attributes of candidates,

campaigns, and district contexts enter in. Second, they imply that when the design clusters a

relatively large number of respondents into a relatively small number of congressional districts,

then the e�ective micro-level N relevant to analyses of the vote will be substantially diminished.

In 1988, for example, while the total N was 2040, the e�ective N given a �̂ of .275 was about 1/5

of that|420.34 No design modi�cation will in
uence the fact that, as long as CD-level variables

are in
uential, then individuals who are nested within CDs will tend toward homogeneity. The

only response one can make is to try and exploit the features of the design that are under one's

control. With � reaching magnitudes of .2 and even up to .5 (see Table 6), the imperative to do so

is even stronger. In short, these �ndings underscore the importance of trying to build more power

into one's sample design|by increasing J at the expense of n, and by employing strati�cation

strategically.

Using CD as a Sampling Unit|Or Not

Most of our earlier discussion has focused on how to design a sample under the assumption

that one would use the congressional district as a 1st-stage sampling unit. Yet, with the exception

districts but striving to analyze the full national sample of respondents, one must construct variables that render

the judgments and choices of respondents across districts comparable. This means, for example, recording the

respondent's vote choice as a vote for the Democrat or the Republican, even though there is a di�erent pair of

Democratic and Republican candidates involved in each district. The �s will tend to be higher for such variables

than for variables where common questions were asked of all respondents concerning common stimuli (e.g.,

evaluations of Congress or of the President); the variance across districts (relative to within) will tend to be higher

because the stimulus itself is varying across the districts.
34In calculating this �gure we used the average Vote Choice �̂ of .275, the N of 2040, the average n of 15, and the

equation for e�ective N shown earlier, Equation 4. Even this low estimate of the e�ective N is probably too large,

in that it assumes that the CDs are chosen at random (i.e., that the e�ective N of CDs is J). But CDs were

partially nested within PSUs in 1988.
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of 1978 and 1980, this has not been the NES practice. There are two important implications that

follow from this.

First, if the CD is not a sampling unit, one cannot exert the same kind of control over those

aspects of the research design that we have emphasized|J , n, and the characteristics of the CDs

sampled (strati�cation). One can still exert some control, of course, by, for example, increasing the

number of PSUs sampled (and hence the number of CDs) and by stratifying PSUs on attributes

likely to be correlated with variables important to understanding congressional elections (which is

probably not urban/rural). Consider the 1996 NES study, which turned out to have a relatively

strong design for the analysis of congressional elections. Because the NES in 1996 reinterviewed

some respondents originally selected in 1992 using the 1980 SRC sampling frame, while also

interviewing a fresh cross-section of respondents drawn from the 1990 SRC sampling frame, the

number of CDs was unusually large and the average n was unusually small. This was probably an

unforeseen, but nevertheless fortuitous, side-e�ect of a design settled upon for reasons that have

nothing to do with studying congressional elections. In any event, in terms of the control that can

be exerted over the design, one is far better o� using the CD as the sampling unit.35

The second issue concerns generalization. The NES studies have been designed to generate a

representative sample of eligible voters but not a representative sample of congressional districts

(except, as noted above, in 1978 and 1980). If the CD is not used as a basis of sampling, then

CDs fall into the sample for reasons that are not entirely foreseeable, or at least fall into the

sample with no well-de�ned probability.36 Since we do not have an equal probability sample of

CDs there is no reason to expect the NES sample of CDs to look just like the population. In fact,

for example, the NES has tended to overrepresent CDs with Democratic incumbents or where

Democrats have tended to win by large margins (>10%). Correspondingly, the NES has tended to

underrepresent CDs with Republican incumbents or large Republican margins of victory. This is

demonstrated in Figure 6.37

35It is conceivable that one would �eld a large enough study to gather survey data on individuals within all 435

districts in the U.S. Then, the CD would not be a sampling unit; instead, the sample design would involve

strati�cation by CD.
36In fact, the probability of selection for any given CD could, in principle, be estimated, using information about

the probability of selection, and population size, of PSUs and lower-level sampling units. This would not be an easy

task|and to our knowledge, it has never been attempted|but if these probabilities were calculated then sampling

weights could be devised to remedy the problems concerning generalizability we address here.
37We emphasize: This does not mean that the NES sample of respondents fails to represent the population from

which it is drawn. Except in 1978 and 1980, the NES studies have not been designed to generate a representative

sample of CDs, but only to generate a representative sample of eligible voters in the continental United States

(excluding Alaska and Hawaii).
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[Figure 6 about here.]

Without random selection at the CD stage one cannot generalize sample �ndings about

districts to the population of CDs, just as one cannot generalize from a non-probability sample of

individuals to a larger population of individuals. In other words, there is no reason to believe that

�ndings based on the CDs that fall into the NES sample would be similar to what one would

observe if analyzing the population of CDs as a whole. With a design like the NES, one can only

make generalizable statements about individuals, and even then one must avoid statements which

sneak in the assumption that the NES sample of CDs is representative. For example, one would

be on shaky ground concluding that \Men and women reacted di�erently to the female

congressional candidates running in 1998" if such a conclusion emerged from an analysis of the

NES data. There is no particular reason to believe that this same relationship would be observed

in an analysis of how voters reacted to the full set of female congressional candidates vying for

oÆce across the nation.

Sampling CDs with Rare Attributes|Or Not

When sampling rare events, one is more likely to undersample them than to oversample

them, especially if the number of independent draws is small. With a dichotomous variable, where

one outcome is rare (e.g., competitive race) and the other outcome is common (uncompetitive

race), this is given by the asymmetry of the binomial distribution. If, for example, 5% of the races

in the population are competitive, then it is likely that less than 5% of one's sampled CDs will be

competitive. This is one reason why strati�cation is a useful procedure. If the population were

�rst strati�ed on the basis of the competitive/uncompetitive variable, then any random deviations

from the 5%/95% breakdown in the sample could be avoided. One could, for example, ensure that

exactly 5 competitive CDs fell into one's sample of 100 CDs.

In the case of the NES, the number of independent draws is suÆciently small so as to make

this a potential problem, at least with respect to sampling relatively rare events (e.g., CDs with

competitive, open-seat races). That number|i.e., the e�ective N of CDs|is no more than the

actual number of CDs that falls into the NES sample, and can be substantially lower than that,

given the multi-stage clustered sample design that the NES employs (though will be no smaller

than the number of primary sampling units drawn at the �rst stage of the sample). As mentioned

earlier, in 1988, for example, 135 CDs fell into the NES study, but the e�ective N was in the

range of 105 to 109. Figure 7 shows that, across the 21 election studies we are examining, the
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NES sample did tend to produce fewer CDs with competitive, open-seat races than were present

in the population. This pattern is consistent with the argument we reviewed above, although it is

also possible that it is caused by some other aspect of the multi-stage sample design.

[Figure 7 about here.]

The fact that we are vulnerable to undersampling CDs with rare traits is not inconsequential,

but the much more serious problem is that, even without such accidents of chance|that is, even

if our sample percentage exactly equaled the population percentage|we end up with a sample

with very, very few micro- and macro-level cases with the attribute in question. The worst year

for the NES in this respect was 1988, where only 22 respondents came from a district with a

competitive, open-seat race (1.1% of the total sample), and all of these respondents came from

one district (see Table 7). By contrast, 1776 (90.1%) of the 1988 NES respondents, from 121

districts, faced uncompetitive races involving an incumbent. In one of the better years, 1994, the

NES sample included 111 (6.7%) respondents from 7 districts in the competitive/open category,

and 1254 respondents(75.2%) from 138 districts in the uncompetitive/incumbent category.

[Table 7 about here.]

What this means is that the variance in CD-level explanatory variables like Open and

Competitive is typically, and in years like 1988, extremely limited. With so few CD-level cases in

three of the four cells of the table obtained by crossing Open and Competitive, statistical

eÆciency is seriously diminished. And, if one seeks to elaborate the model by adding additional

CD-level variables or by building interactions among them, serious problems involving

multicollinearity are likely to arise.

One response in this circumstance, as we suggested earlier, is to alter the sample design by

sampling so as to ensure balance in the number of CDs with crucial attributes (our \design B",

Table 3). This would essentially even out the CD percentages in Table 9, and generate more

statistical power for estimating CD-level e�ects. This, however, may not be a bold enough step. If

the sample design remains an equal probability sample at the individual-level, the alteration just

described would leave the percentage of respondents falling into the various CD categories in

Table 9 unchanged. Do we really want upwards of 75%|and as high as 90%|of the NES

respondents to reside in districts where there is essentially no race?
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Conclusion

Our advice about how to design a study of congressional elections challenges both conventional

wisdom and current practice. If congressional elections are predominantly local a�airs, where

what is happening in local contexts is critical to understanding the election outcome, then despite

intuition to the contrary, we should be designing national surveys that sample relatively few

individuals within relatively many CDs. We should also exert control over which CDs fall into our

sample, by using CD as a sampling unit and stratifying by important explanatory variables.

These stratifying variables are likely to be political, not geographic. Strati�cation will ensure that

our sample contains suÆcient variation on key macro-level explanatory variables, enhancing the

value of the data to analysts. Even further gains in statistical eÆciency can be made by

undertaking a national survey that does not generate an equal probability sample of eligible

voters (though it should, of course, sample eligible voters with known probability so that

sampling weights can be devised and applied). This means oversampling individuals within

districts that have rare traits, undersampling in other districts to avoid the ineÆciencies of large

clusters, and directing resources toward extending the overall CD sample size.

To illustrate and defend these arguments, we have relied on examples, simulations, and data

analysis. In this process, we have been quite critical of the NES multi-stage cluster sample design.

What we have not discussed is that the NES' use of this design re
ects cost considerations that


ow from the NES commitment to in-person interviewing, which, itself is based on a commitment

to data quality. It is simply too costly (in terms of expense) to conduct in-person interviews with

a widely dispersed sample of respondents, and too costly (in terms of data quality) to abandon

the in-person sampling frame and interview format. Throughout this paper we have not

considered the practical diÆculties associated with implementing various sample designs, nor

situated our advice about sampling within a broader research design framework. But, of course, it

makes no sense to encourage researchers to pursue sampling strategies that are too expensive to

execute or would compromise data quality. Similarly, while strati�cation on political variables is

desirable from a theoretical standpoint, one needs stratifying variables for which data on

population units can be collected, with relative ease, well in advance of the �eldwork. When

designing any sample, such considerations must be balanced alongside the kinds of statistical

considerations that we have emphasized.
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Thus, we think of our advice as opening or reopening, not closing, the discussion about how

to design surveys of congressional elections. At the same time, although we have mentioned

\congressional" 53 times, \district" 115 times and \NES" 116 times so far, this paper has not just

been about designing research focused on congressional elections in the United States. Our

arguments are applicable to any research problem involving multiple levels of analysis. The most

obvious extension is to research focused on subnational elections in other countries. But

multi-level problems are many and varied. Researchers studying political institutions examine

bureaucrats nested within bureaucracies and legislators nested within legislatures. Political

communications researchers gather data on newspaper articles nested within newspapers and

advertisements nested within campaigns. In each of these cases and others, researchers must

decide how to trade J for n, how to stratify, and must grapple with �. We hope that this

discussion, while focused on the study of congressional elections in the U.S., sheds light on the

design issues scholars facing other multi-level problems must confront.
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Figure 1: Power of Tests for Macro-Level E�ects
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Figure 2: Simulated Standard Errors of Micro-level, Macro-level, and Cross-level E�ect Estimates
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Figure 3: Simulated Standard Errors for Design A versus Design B
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Figure 4: Simulated Standard Errors for Design A versus Design B: \Realistic" Parameter Values
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Figure 5: The Number of NES Respondents per Congressional District, 1956-1998
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Figure 6: Percentage of CDs with Large Democratic Margins of Victory, and Percentage of CDs

with Democratic Incumbents|Population Percentages vs. NES Percentages
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Figure 7: Percentage of CDs with Open-Seat and Competitive Races|Population Percentages vs.

NES Percentages
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Table 1: Population

Uncompetitive Competitive

Incumbent 5,000,000 individuals 1,000,000 individuals

500 CDs @10,000 each 100 CDs @10,000 each

Open-Seat 1,000,000 individuals 1,000,000 individuals

100 CDs @10,000 each 100 CDs @10,000 each

Table 2: Sample Design A, Equal Probability Sample at Each Stage

Uncompetitive Competitive

Incumbent 50 CDs 10 CDs

n=10 n=10

N=500 N=100

Open Seat 10 CDs 10 CDs

n=10 n=10

N=100 N=100

Table 3: Sample Design B, Balanced at Stage 1, Equal Probability at Stage 2

Uncompetitive Competitive

Incumbent 20 CDs 20 CDs

n=25 n=5

N=500 N=100

Open Seat 20 CDs 20 CDs

n=5 n=5

N=100 N=100



Table 4: E�ective Sample Size

Design A Design B

Actual N = 800 E�ective N = 287 E�ective N = 254

500 100 179 36 86 56

100 100 36 36 56 56
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Table 5: NES Sample Designs since 1956

YEAR N of CDs N of Respondents Sample Design Summary

1956 145 1762 1950 SRC Sampling Frame
12 sr + 54 nsr = 66 PSUs

1958 141 1450 1950 SRC Sampling Frame
12 sr + 54 nsr = 66 PSUs

1960 141 1181 1950 SRC Sampling Frame
12 sr + 54 nsr = 66 PSUs

1964 138 1571 1960 SRC Sampling Frame
12 sr + 62 nsr = 74 PSUs

1966 133 1291 1960 SRC Sampling Frame
12 sr + 62 nsr = 74 PSUs

1968 144 1557 1960 SRC Sampling Frame
12 sr + 62 nsr = 74 PSUs

1970 155 1507 1960 SRC Sampling Frame
12 sr + 62 nsr = 74 PSUs

1972 164 2705 1970 SRC Sampling Frame
12 sr + 62 nsr = 74 PSUs

1974 155 1575 1970 SRC Sampling Frame
12 sr + 62 nsr = 74 PSUs

1976 162 2248 1970 SRC Sampling Frame
12 sr + 62 nsr = 74 PSUs

1978 108 2304 108 CD PSUs

1980 113 1614 108 CD PSUs (1978 Frame)

1982 168 1418 1970 SRC Sampling Frame
12 sr + 62 nsr = 74 PSUs

1984 134 2257 1980 SRC Sampling Frame
16 sr + 68 nsr = 84 PSUs (11 + 34 = 45 used)

1986 180 2176 1980 SRC Sampling Frame
16 sr + 68 nsr = 84 PSUs (16 + 45 = 61 used)

1988 135 2040 1980 SRC Sampling Frame
16 sr + 68 nsr = 84 PSUs (11 + 34 = 45 used)

1990 121 1980 1980 SRC Sampling Frame
16 sr + 68 nsr = 84 PSUs (11 + 34 = 45 used)

1992 181 2485 1980 SRC Sampling Frame
16 sr + 68 nsr = 84 PSUs (16 + 45 = 61 used)

1994 190 1795 1980 SRC Sampling Frame
16 sr + 68 nsr = 84 PSUs (16 + 45 = 61 used)

1996 246 1714 1990 SRC Sampling Frame
28 sr + 80 nsr = 108 PSUs (18 + 36 = 44 used)

1998 128 1281 1990 SRC Sampling Frame
28 sr + 80 nsr = 108 PSUs (18 + 36 = 44 used)

Note: In the \Sample Design Summary" column, we �rst list the year identifying the SRC
sampling frame, and then the number of primary sampling units (PSUs) chosen at the �rst
stage of the sample design. The abbreviation \sr" refers to self-representing (probability
of selection=1), while \nsr" refers to non-self representing. When we identify the number
used in parenthesis, this means that only a subset of the available PSUs were used in the
particular study. A number of studies involved both cross and panel respondents. Only in
1996 did this involve panel respondents who were selected from a di�erent sampling frame
(1980) than were the cross-section respondents (1990), and hence from a di�erent collection
of PSUs. This is why the number of CDs is so high in 1996.
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Table 7: Congressional Districts in the NES: Distribution of CDs and Respondents

Year Incumbent
Not Competitive

Incumbent
Competitive

Open-Seat
Not Competitive

Open-Seat
Competitive

56 NES CDs 76.1 17.6 5.6 0.7
NES Rs 76.2 18.2 4.2 1.4

58 NES CDs 66.2 20.3 9.0 4.5
NES Rs 56.9 30.3 9.1 3.6

60 NES CDs 78.3 14.5 3.6 3.6
NES Rs 69.9 21.4 5.5 3.1

64 NES CDs 71.1 16.3 7.4 5.2
NES Rs 66.4 21.9 6.8 4.8

66 NES CDs 78.6 12.2 6.9 2.3
NES Rs 80.3 11.3 7.2 1.2

68 NES CDs 78.2 9.2 6.3 6.3
NES Rs 78.0 11.9 4.0 6.1

70 NES CDs 81.5 7.9 6.6 4.0
NES Rs 84.5 8.2 5.0 2.3

72 NES CDs 75.9 8.9 10.8 4.4
NES Rs 78.0 7.0 9.0 6.0

74 NES CDs 70.7 16.0 10.0 3.3
NES Rs 66.8 19.5 7.4 6.2

76 NES CDs 80.3 5.7 8.3 5.7
NES Rs 78.0 6.4 11.7 3.9

78 NES CDs 80.4 6.9 9.8 2.9
NES Rs 80.0 7.3 9.2 3.5

80 NES CDs 83.3 11.1 3.7 1.9
NES Rs 82.4 11.2 4.9 1.5

82 NES CDs 69.4 13.8 15.0 1.9
NES Rs 71.4 15.0 10.4 3.2

84 NES CDs 83.2 7.6 6.1 3.1
NES Rs 80.6 10.2 8.5 0.7

86 NES CDs 86.2 4.6 5.7 3.4
NES Rs 88.4 5.2 4.9 1.4

88 NES CDs 91.7 2.3 5.3 0.8
NES Rs 90.1 1.2 7.6 1.1

90 NES CDs 88.2 5.0 5.0 1.7
NES Rs 87.8 3.0 4.6 4.7

92 NES CDs 68.0 13.3 12.7 6.1
NES Rs 67.4 12.4 15.7 4.5

94 NES CDs 77.5 11.8 6.7 3.9
NES Rs 75.2 10.0 8.2 6.7

96 NES CDs 75.9 12.9 7.1 4.1
NES Rs 77.8 12.9 5.5 3.7

98 NES CDs 83.2 9.3 3.7 3.7
NES Rs 76.8 11.4 1.6 10.2

Note: Cell entries contain %s, describing the distribution of NES cases across the 4 category
CD-level variable identi�ed in the top row. The % of NES CDs is the % of CDs in the NES
sample (i.e., represented by at least one NES respondent) with the named characteristic.
The % of Rs is the % of respondents falling into the named type of CD.
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Appendix

The Multi-Level Model

The multi-level model was developed to represent how the behavior of individuals is in
uenced by

their own (individual-level) characteristics as well as the characteristics of the contexts in which

they are nested (CDs, in our case). Below, we illustrate the model for the case in which there are

two district-level explanatory variables and one individual-level explanatory variable. Interested

readers should consult Bryk & Raudenbush (1992), Goldstein (1999), Jones & Steenbergen

(1997), Kreft & Leeuw (1998), and Snijders & Bosker (1999) for further details.

y
ij
=�0j + �1jxij

+ e
ij

(A1)

�0j = 
00 + 
01z1j + 
02z2j + u0j (A2)

�1j = 
10 + 
11z1j + 
12z2j + u1j (A3)

Combining the previous three equations, we have:

y
ij
=
00 + 
01z1j + 
02z2j + u0j + (x

ij
)(
10 + 
11z1j + 
12z2j + u1j) + e

ij
(A4)

=
00 + 
01z1j + 
02z2j + 
10xij
+ 
11z1jxij

+ 
12z2jxij
+ (u0j + u1jxij

+ e
ij
); (A5)

where j = 1 : : : J and i = 1 : : : n
j
.

Equation A1 speci�es the relationship at the micro level, (where x
ij
is the individual-level

independent variable). Equations A2 and A3 specify the relationship between the coeÆcients of

the micro-level equation and the macro-level variables. Finally, equations A4 and A5 combine the

previous equations into a single equation. With this model, one can evaluate the extent to which

a macro-level variable (z1j or z2j) directly in
uences the dependent variable. At the same time,

the micro-level regression coeÆcients �, are allowed to vary across macro-level units. That is,

each macro-level unit (j) is allowed to have its own intercept (�0j) and slope (�1j). The mean of

the distributions of these intercepts and slopes is summarized by the 
 terms found in

equation A5. The term 
00 is the overall mean of y
ij
; 
01 and 
02 indicate the (average) direct

e�ects of the macro-level variables on y
ij
; 
10 indicates the (average) direct e�ect of the

micro-level variable; 
11 and 
12 indicate the (average) e�ect of the cross-level interactions.

In equation A5 the terms from equation A4 have been reordered to put all of the error terms at

the end, in parentheses. Notice that this error component includes a term that refers to the

micro-level independent variable. The existence of this term is taken into account in multi-level

model estimation, but would not be taken into account if one simply tried to estimate the e�ect of

micro-level, macro-level, and cross-level interaction variables with OLS (hence, resulting in bias

with OLS estimation). This error component also includes terms (u0j and u1j) that refer to the

variance in the macro-level intercepts and slopes, respectively. And, it contains the micro-level

disturbance (e
ij
). Either Maximum Likelihood or Generalized Least Squares is necessary to

eÆciently estimate the model (Snijders & Bosker 1999, pages 56-57).

[Figure A1 about here.]
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Figure A1: Empirical Distribution of CD Appearances in the NES, and Expected Distribution

Under an Assumption of Independence in the Draws
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Note: The empirical distribution (histogram bars) is only based on congressional districts that \existed"

for 21 years. The expected distribution (density curve) is based on the Binomial distribution setting

P=.35, since on average over the period, the NES sample included 35% of the population of CDs. See

footnote 32 for further details.
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